Energy error based numerical algorithms for Cauchy problems for nonlinear elliptic or time dependent operators

Stéphane ANDRIEUX
LaMSID, UMR2832 CNRS-EDF, EDF R\&D, France
Thouraya NOURI BARANGER
LaMCoS, INSA-Lyon, CNRS UMR5259, France
Université de Lyon, Université Lyon 1, France

Overview

1. A variant of the Cauchy Problem and its applications
2. Solution of the CP by splitting of fields and energylike error minimization
3. The pseudo-energy for various kind of operators
4. Numerical examples

The Cauchy problem ... and its applications

- A variant of the Cauchy problem :

- Basic ingredients :
- A Domain Ω of RR^{n} and eventually a time interval $[0, D]$
- A PDO A acting on a field u defined on $\Omega \times] 0, D[$ or Ω
- A boundary operator B associated with A
- A part Γ_{m} of the boundary of $\Omega\left(\partial \Omega=\Gamma_{m} \cup \Gamma_{u} \cup \Gamma_{b}\right)$
- A field f or U given on $\left.\Gamma_{b} \times\right] 0, D\left[\right.$ or Γ_{b}
- A pair of fields given on $\Gamma_{m}:\left(U_{m}, F_{m}\right)$
- The Cauchy problem : Find u in $\Omega \times] 0, D[$ or Ω s.t. :
- $A u=0$ in $\Omega \times] 0, D[$ or Ω
- Bu=f or $u=U$ on $\left.\Gamma_{b} \times\right] 0, D\left[\right.$ or $\Gamma_{b} \quad$ (usual BC)
- $u=U_{m}$ and $B u=F_{m}$ on $\left.\Gamma_{m} \times\right] 0, D\left[\right.$ or G_{m} (overspecified $B C$)

The Cauchy problem ... and its applications

- The Γ_{u} part of the boundary is not accessible, and no BC is known. The Cauchy problem is then viewed
- as a field extension problem into the domain : determine the whole field u inside the body from the knowledge of overspecified data on a part of its boundary.
- as a data completion problem or a BC identification problem: find $B u$ and u on Γ_{u} from the knowledge of overspecified
- The second version shows that the Cauchy problem for bounded domains pertains to the field of inverse or identification problems.
- The Cauchy problem is the way of setting well-posed time evolution problems (hyperbolic or parabolic ones with $\Gamma_{u}=\Omega$) but is ill-posed for others operators and/or others varieties Γ_{u}

Applications : Elliptic operators
 Thermal conduction, Elasticity , Stokes or Darcy system

Determination of elastic parameters for an inclusion with known position and geometry
 interface stresses

Determination of leakage in a Darcy system

Identification of fluid stratification within a pipe

Identification of contact zone and pressure

Determination of linear fracture mechanics parameters from external surface measurements

Applications : time dependant, non linear operators

Heat equation, Elastodynamics, Stokes system, hyperelasticity

Solution of the CP by splitting the fields and a (pseudo) energy error minimization

Two simple ideas

Model Problem : $\quad \begin{cases}\Delta u=0 & \text { in } \Omega \\ \text { the Laplace operator } \\ \nabla u . n=0 & \text { on } \Gamma_{b} \\ u=U_{m}, \nabla u . n=F_{m} & \text { on } \Gamma_{m} \\ u=\tau, \nabla u . n=\eta & \text { on } \Gamma_{u}\end{cases}$

1. Introduce the BC on Γ_{u} as unknowns and define two solutions of well-posed problems, using one of the overspecified BC on Γ_{m} and one of the lacking BC on Γ_{u}

$$
\left\{\begin{array} { l l }
{ \Delta u _ { 1 } = 0 } & { \text { in } \Omega } \\
{ \nabla u _ { 1 } \cdot n = 0 } & { \text { on } \Gamma _ { b } } \\
{ u _ { 1 } = U _ { m } } & { \text { on } \Gamma _ { m } } \\
{ \nabla u _ { 1 } \cdot n = \eta } & { \text { on } \Gamma _ { u } }
\end{array} \quad \begin{array} { l }
{ \text { Unknows : } }
\end{array} \quad \left\{\begin{array}{ll}
\Delta u_{2}=0 & \text { in } \Omega \\
\nabla u_{2} \cdot n=0 & \text { on } \Gamma_{b} \\
\nabla u_{2} \cdot n=F_{m} & \text { on } \Gamma_{m} \\
u_{2}=\tau & \text { on } \Gamma_{u}
\end{array}\right.\right.
$$

Solution of the CP by splitting the fields and a (pseudo) energy error minimization

If u_{1} and u_{2} are equal
then the CP is solved: $u=u_{1}$ and the BC on Γ_{u} are (η, τ)
2. Introduce a (semi) norm on $\left(u_{1}-u_{2}\right)$ and minimize it.

$$
E(\eta, \tau)=\frac{1}{2} \int_{\Omega}\left(\nabla u_{1}(\eta)-\nabla u_{2}(\tau)\right)^{2} \rightleftarrows\left(\left.u\right|_{\Gamma_{u}},\left.\nabla u \cdot n\right|_{\Gamma_{u}}\right)=\underset{\substack{\eta, \tau \\ \operatorname{ArgMin} E \\ \eta}}{ }(\eta, \tau)
$$

The Energy error E is closely related to the physics of the problem and is preferred to the usual least-square error (take into account the eventual heterogeneity, anisotropy

Some nice properties of the (pseudo) energy error

- The Error energy is quadratic convex positive
- The minimum is zero (for compatible pair of data $\left(U_{m}, F_{m}\right)$)
- E has an expression involving only boundary terms (used for computation):

$$
\begin{aligned}
& E(\eta, \tau)=\frac{1}{2} \int_{\partial \Omega}\left(\nabla u_{1}(\eta)-\nabla u_{2}(\tau)\right) \cdot n\left(u_{1}(\eta)-u_{2}(\tau)\right) \\
& E(\eta, \tau)=\frac{1}{2} \int_{\Gamma_{m}}\left(\nabla u_{1} \cdot n-F_{m}\right)\left(U_{m}-u_{2}\right)+\frac{1}{2} \int_{\Gamma_{u}}\left(\eta-\nabla u_{2} \cdot n\right)\left(u_{1}-\tau\right)
\end{aligned}
$$

- The term energy is (abusively here) coined from the variational properties associated with the Laplace operator:

$$
u=\operatorname{ArgMin} \frac{1}{2} a(v, v)-l(v) \quad a(u, v)=\int_{\Omega} \nabla u . \nabla v
$$

Practical implementation of the energy error method

- Use iterative minimization methods rather than first-order optimality conditions (as soon as the number of unknowns increases) : CG with trust region methods.
- Compute the gradient by (2) adjoint problems : Laplace problems with boundary terms only. Each iteration needs 4 resolutions of direct problems of same kind.
- The fixed-point two-steps algorithm of Kozlov-Maz'ya-Fomin (1991) can be interpreted as an alternating directions descent method for the minimization of E (so that far better performances are achieved with a "serious" minimizing algorithm)

The pseudo-energy for various kind of operators : elliptic operators

- For linear elliptic symmetric operators, the pseudo energy as the same form as for the Laplace operator and uses the associated symmetric bilinear form : $\quad E(\eta, \tau)=a\left[u_{1}(\eta)-u_{2}(\tau), u_{1}(\eta)-u_{2}(\tau)\right]$

O For non-linear elliptic operator associated with a convex potential (like hyperelasticity)

$$
\begin{cases}\operatorname{div} \sigma=0 & \text { in } \Omega \\ \sigma \in \partial \varphi(\varepsilon), \varepsilon=\nabla u^{s} & \text { in } \Omega \\ \sigma(u) \cdot n=F_{m}, u=U_{m} & \text { on } \Gamma_{m}\end{cases}
$$

O use the Fenchel crossresidual

$$
E(\eta, \tau)=\int_{\Omega}\left(\sigma_{1}-\sigma_{2}, \varepsilon\left(u_{1}\right)-\varepsilon\left(u_{2}\right)\right) d \Omega
$$

$$
E(\eta, \tau) \geq 0
$$

Reduces to the error energy for quadratic φ

$$
E(\eta, \tau)=0 \Leftrightarrow \sigma_{1} \in \partial \varphi\left[\varepsilon\left(u_{2}\right)\right], \sigma_{2} \in \partial \varphi\left[\varepsilon\left(u_{1}\right)\right]
$$

Then $\varepsilon\left(u_{2}\right)=\varepsilon\left(u_{1}\right)$ if φ is differentiable

The pseudo-energy for various kind of operators : parabolic operators

- The model problem is the heat equation

$$
\begin{cases}\rho c \dot{u}-\operatorname{div}(k \nabla u)=0 & \text { in } \Omega \mathrm{x}] 0, D[\\ u=U_{m}, k \frac{\partial u}{\partial n}=\Phi_{m} & \text { on } \left.\Gamma_{m} \mathrm{x}\right] 0, D[\\ u(x, 0)=u_{0}(x) & \text { in } \Omega\end{cases}
$$

- The energy error is integrated over the time interval and a control on the final state (at $t=D$) is introduced

$$
E(\eta, \tau)=\int_{0}^{D} \int_{\Omega} k\left[\nabla\left(u_{1}-u_{2}\right)\right]^{2} d \Omega d t+\frac{1}{2} \int_{\Omega} \rho c\left[u_{1}-u_{2}\right]_{t=D}^{2} d \Omega
$$

- The energy error enjoys again a boundary expression

$$
E(\tau, \eta)=\int_{0}^{D} \int_{\Gamma_{u}}\left(u_{1}-\tau\right)\left(\eta-k \nabla u_{2} \cdot n\right) d \Gamma_{u} d t+\int_{0}^{D} \int_{\Gamma_{m}}\left(U_{m}-u_{2}\right)\left(k \nabla u_{1} \cdot n-F_{m}\right) d \Gamma_{m} d t
$$

as

The pseudo-energy for various kind of operators : hyperbolic operators

O The model problem is the elastodynamics equation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\rho \ddot{u}+c \dot{u}-\operatorname{div}(\mathbf{A}: \varepsilon(u)+\mathbf{B}: \varepsilon(\dot{u}))=0 \text { in } \Omega \mathrm{x}] 0, \mathrm{D}[\\
\left.[\mathbf{A}: \varepsilon(u)+\mathbf{B}: \varepsilon(\dot{u})] \cdot \boldsymbol{n}=F_{m}, \boldsymbol{u}=U_{m} \quad \text { on } \Gamma_{m} \mathrm{x}\right] 0, \mathrm{D}[\\
\quad \boldsymbol{u}(x, 0)=\boldsymbol{u}^{0}(x), \dot{\boldsymbol{u}}(x, 0)=\boldsymbol{u}^{1}(x) \text { in } \Omega
\end{array}\right.
\end{aligned}
$$

O The energy error contains a control over the time interval of the dissipation, and a control on the final state (at $t=D$) for the elastic and kinetic energies :

$$
\begin{aligned}
& J(v)=\int_{0}^{D} \int_{\Omega}\left(c \dot{v}^{2}+\mathrm{B}: \varepsilon(\dot{v}): \varepsilon(\dot{v})\right) d \Omega d t+\left.\frac{1}{2} \int_{\Omega}\left(\rho \dot{v}^{2}+\mathrm{A}: \varepsilon(v): \varepsilon(v)\right) d \Omega\right|_{t=D} \\
& E(\eta, \tau)=J\left[u_{1}(\eta)-u_{2}(\tau)\right]
\end{aligned}
$$

The energy error enjoys again a boundary expression

$$
J(v)=\int_{0}^{D} \int_{\Gamma_{m}}(\mathrm{~A}: \varepsilon(v)+\mathrm{B}: \varepsilon(\dot{v})) \cdot \dot{v} \cdot n d \Gamma d t+\int_{0}^{D} \int_{\Gamma_{u}}(\mathrm{~A}: \mathcal{\varepsilon}(v)+\mathrm{B}: \varepsilon(\dot{v})) \cdot \dot{v} \cdot n d \Gamma d t
$$

A remark for non dissipative media

O For purely elastic media ($B=C=0$) , the previous energy error degenerate into :

$$
J(v)=\left.\frac{1}{2} \int_{\Omega}\left(\rho \dot{v}^{2}+\mathrm{A}: \varepsilon(v): \varepsilon(v)\right) d \Omega\right|_{t=D}
$$

O But due to the exact controllability of the elastodynamics equation (Lions, 1988) this error is no more sufficient :

$$
J(v)=0 \nRightarrow v=0
$$

- And a penalized energy must be employed (k, K pseudo material parameters) :

$$
J(v)=\left.\frac{1}{2} \int_{\Omega}\left(\rho \dot{v}^{2}+\mathrm{A}: \mathcal{E}(v): \mathcal{E}(v)\right) d \Omega\right|_{t=D}+\frac{\alpha}{2} \int_{0}^{D} \int_{\partial \Omega}\left(k v^{2}+K \dot{v}^{2}\right) d \Gamma d t
$$

Numerical examples

Indentation of an elastic bi-material :

- No information about the indentation force or indentor displacement
- "displacement field" measurements on a small part of the stress free surface

- Number of node on $\Gamma_{m}: 134$
- Number of nodes on $\Gamma_{u}: 345$
-185 iterations

Comparison of exact and identified displacement field

95

Numerical Examples

Indentation of an elastic bi-material

Normal stresses

Norms of shear stresses

Comparison between identified and computed stress components on the interface

Numerical Examples

Identification of inner temperature and heat flux in a pipe :

Two-dimensional model for pipeline :
Inner radius $\mathrm{R}_{\mathrm{i}}=12 \mathrm{~cm}$.
Outer radius $R_{e}=12.92 \mathrm{~cm}$.
Material properties:

$$
\begin{aligned}
& \mathrm{k}=15.9 \times 10^{-2}, \rho=7.8 \times 10^{-3} \mathrm{Kg} / \mathrm{cm}^{3} \\
& \mathrm{c}=494
\end{aligned}
$$

heat equation

Numerical Examples

Identification of inner temperature and heat flux in a pipe : heat equation

Influence of the stopping criterion

Numerical Examples

Identification of inner temperature and heat flux in a pipe :
heat equation

Comparison between identified and computed inner

css

Numerical Examples

Identification of BC for a beam under an impact loading : elastodynamics

Numerical Examples

Identification of BC for a

 beam under an impact loading : elastodynamics

Comparison between identified and computed displacement and rotation at point A

Comparison between identified and computed moment and shear resultant at point A

Conclusions

- The method is quite general for (spatial) symmetric operators and lead to efficient functionals compared to least-squares based ones.
- It allows for dealing with 3D applications, and can be used with usual FEM softwares allowing monitoring procedures.
- Regularization is a priori needed (the CP is severely ill-posed) but with moderate noise it can be avoided because of smoothing behavior of the minimizing procedure and good behavior of the energy error functional
- Future work on computational efficiency, extension to non-symmetric operators, others applications and resolution of some troubles with adjoint techniques for time dependent and non-differentiable problems (non C^{2} convex potentials).

